The Show Notes: Rabbit Hole of Research Episode 11: Cloning. Episode 11: Cloning.

Nick and I are joined by Jordan to talk about cloning pets, Star Wars, Epigenetics, Homunculi, Somatic cells, Gremlins, AntMan, Chromosomes, Woolly Mammoths, Flubber, and what’s in Nick’s Water?

Episode 11: Cloning. Episode 11: Cloning

This has no particular format; it’s just correcting or updating anything in the show we didn’t get a chance to fully talk about or things we had on the tips of our tongues and couldn’t get out as we recorded. As always, feel free to comment, and we will address stuff in future shows! Enjoy. 

Don’t forget to Rate the show! Tell a Friend! Subscribe!

artwork by 

Georgia Geis@atomicnumber14

Jordan Miller’s Info

Check out Jordan’s music on Spotify Channel

Come out and see Jordan Playing Live at the St. John’s Farmer’s Market.

Location: St. John (Community Hospital OutpatientCenter) at 9660 Wicker Ave., St John, IN

When: June 30, July 28, August 25, Sept 29, October 27

(Mention the Pod and get a tomato! Only three available.😊)

What we Drinking

Nick and Joe are Beer Twinsies this episode: Disco GrandPa: Crushed by Giants Brewing Company

Jordan: H2O

Subscribe now


Leave a comment

Joe’s Show Notes:

Movies and shows mentioned in show:

They Cloned Tyrone (2023)

Dual (2022)

Jurassic park (1993)

Moon (2009)

Flubber (1997)

Full Metal Alchemist (2003, 2009)


Never Let Me Go (2005) by Kazuo Ishiguro

Country wisdom book

Nick’s Ant man theory: Could AntMan kill Thanks by enlarging inside his butt?

Yes there have been force sensitive Ewoks—Jedi

Pooba is the name of the Jedi in the animated series

Whiptail lizard does not need to have sex to reproduce!!!

14 day limit on culturing human embryos after fertilization

Cloning from blood

Can make clones from White blood cells

Red blood cells have no genetic material

About 1% of blood is White blood cells

Why Cloning from a mosquito’s harvested blood is bad

Genetic material will degrade and be mixed with other sources. Difficult to piece together genetic source material with knowing original.

Reproductive/Germ-line cells

Cells that come from embryos

Somatic cells

Somatic cells are any cells in the body that are not involved in reproduction. These cells make up the tissues, organs, and structures of an organism’s body. 

A video about Reproductive vs somatic cloning

How many chromosomes do human cells have?

Human somatic cells have 46 chromosomes (23 pairs). Human reproductive cells have 23 chromosomes.

Of these pairs, 22 pairs are autosomes, which are the non-sex chromosomes, and one pair is the sex chromosomes, consisting of one X chromosome and one Y chromosome in males (XY) and two X chromosomes in females (XX).

Stem Cells

Stem cells are undifferentiated cells with the remarkable ability to develop into various specialized cell types in the body. 

Pluripotent cells

Pluripotent cells are a type of stem cell that has the ability to differentiate into many different cell types in the body. 

1. Therapeutic cloning: In therapeutic cloning, pluripotent stem cells are derived from cloned embryos for medical purposes. This process involves creating a cloned embryo using the nucleus of a somatic cell (such as a skin cell) and an egg cell that has had its nucleus removed. The resulting embryo is allowed to develop for a short period, and pluripotent stem cells are then harvested from it for use in medical research or potentially for therapeutic purposes, such as regenerative medicine.

2. Reproductive cloning: Reproductive cloning involves creating a genetically identical copy of an existing organism. This process typically involves transferring the nucleus of a somatic cell into an enucleated egg cell, which is then implanted into a surrogate mother where it can develop into a cloned organism. Reproductive cloning has been successfully demonstrated in animals, but ethical and technical challenges have largely prevented its application in humans.


Epigenetics is the study of changes in gene expression or cellular phenotype that occur without alterations in the underlying DNA sequence. These changes are heritable and reversible, but they do not involve changes to the DNA sequence itself. Instead, epigenetic mechanisms involve modifications to DNA or associated proteins, such as histones, that regulate gene expression.

Cloning animal history

1. Frogs (1950s): The first successful experiments in cloning were conducted on frogs by scientists Robert Briggs and Thomas King. 

2. Dolly the Sheep (1996): The most famous milestone in cloning history came with the birth of Dolly the Sheep in 1996. Dolly was the first mammal to be cloned from an adult somatic cell using a technique called somatic cell nuclear transfer (SCNT). 

3. Subsequent Cloned Animals: Following Dolly’s cloning, scientists around the world cloned various other animals, including mice, cattle, pigs, cats, dogs, and more. 

Ethical and Technical Challenges: 

Despite the scientific advancements, cloning has faced ethical and technical challenges, including low success rates, health issues in cloned animals, and ethical concerns related to human cloning. These challenges have led to ongoing debates and regulations surrounding the practice of cloning.

Cloning plants

The cloning of plants has a longer history than animal cloning and has been practiced for centuries through various traditional methods such as grafting, cuttings, and tissue culture. Here are some key milestones in the history of plant cloning:

1. Tissue Culture Techniques (Late 19th to Early 20th Century): The concept of tissue culture, which involves growing plant cells, tissues, or organs in a nutrient medium under sterile conditions, was developed in the late 19th and early 20th centuries. 

2. Cloning of Orchids (Late 19th Century): Orchids were among the first plants to be successfully cloned using tissue culture methods. In the late 19th century, botanists began experimenting with tissue culture techniques to propagate orchids on a large scale.

3. Discovery of Plant Growth Regulators (Early to Mid-20th Century): The discovery and understanding of plant growth regulators, such as auxins and cytokinins, in the mid-20th century facilitated the development of more precise methods for plant cloning. 

4. Cloning of Woody Plants (Mid-20th Century): In the mid-20th century, researchers began applying tissue culture techniques to clone woody plants such as trees and shrubs. 

5. Modern Biotechnology Methods (Late 20th Century to Present): Advances in biotechnology and molecular biology have further enhanced plant cloning techniques. 

Cloning pets

Cloning pets involves using genetic material from a deceased or living animal to create a genetically identical copy, known as a clone. While the concept of cloning pets has gained attention and interest from pet owners who wish to preserve the genetic lineage of their beloved companions, it remains a controversial and ethically complex practice.

Several companies offer commercial pet cloning services, typically involving the following steps:

1. Genetic Material Collection: DNA samples are collected from the pet to be cloned. This can be done through a biopsy, where a small tissue sample is taken, usually from the skin.

2. Somatic Cell Nuclear Transfer (SCNT): The DNA from the donor pet is then inserted into an enucleated egg cell (an egg cell with its nucleus removed) from another animal of the same species. This process is called somatic cell nuclear transfer (SCNT) and is similar to the technique used to clone Dolly the Sheep.

3. Embryo Development: The reconstructed embryo is then cultured in a laboratory until it reaches the appropriate stage for implantation.

4. Implantation: The cloned embryo is implanted into a surrogate mother of the same species, where it can develop and grow until birth.

Nature vs Nurture

Nature refers to how genetics influence an individual’s personality, whereas nurture refers to how their environment (including relationships and experiences) impacts their development.


A structure that caps the ends of chromosomes and keeps them intact.

Factors involved in clone aging

Homunculus (1500s)

a supposed microscopic but fully formed human being from which a fetus was formerly believed to develop.


This was the beginning of spermists’ theory, which held that the sperm was in fact a “little man” that was placed inside a woman for growth into a child, a neat explanation for many of the mysteries of conception. It was later pointed out that if the sperm was a homunculus, identical in all but size to an adult, then the homunculus may have sperm of its own.

Antonie van Leeuwenhoek (1677)

Dutch microbiologist and microscopist visualized spermatozoa.

Spermist Nicolas Hartsoeker (1695)


Homunculus argument

is an informal fallacy whereby a concept is explained in terms of the concept itself, recursively, without first defining or explaining the original concept.

Woolly Mammoth cloning

Print By Georgia Geis @atomic_number14

Okay, that’s it for this episode. How’d we do?

You can always email (I do answer back), click the comment link below, or follow me online for real time tracking. 

The Show Notes: Rabbit Hole of Research Episode 9: Sleep Studies and Dreams

Joe, Nick and Georgia talk sleep, Chianti & fava beans, brain rinsing, They Live, Inception, lucid dreaming, noisy ice, John Wick’s dreams, Nick’s research, Jacob’s ladder, sleep paralysis, and more.

Episode 9 – Sleep Studies

This has no particular format; it’s just correcting or updating anything in the show we didn’t get a chance to fully talk about or things we had on the tips of our tongues and couldn’t get out as we recorded. As always, feel free to comment, and we will address stuff in future shows! Enjoy. 

Don’t forget to Rate the show!

artwork by 

Georgia Geis@atomicnumber14

*Both Joe and Georgia have notes below

Say hello and let us know:

Do you take naps?

Can you lucid dream?

Do you have a favorite Sleep or Dream inspired movie or novel?

What we drinking?

Joe- insufficient clearance — Sketchbook brewery

Nick- Matcha Martian —Bean Me Up Roastery

Georgia — Watermelon White Claw

Joe’s Show Notes:


(own-I-rology) the scientific study of dreams.


known as a sleep study, is a test used to diagnose sleep disorders.

Famous Sleep Studies

  1. The Sleepless Elite (2014)
  2. The “Fatal Familial Insomnia” Case Studies (1980s)
  3. The Randy Gardner Experiment (1960s): stayed awake for 264.4 hours (11 days and 24 minutes) as part of a science fair project
  4. The “Sleepless in San Diego” Study (2002)

Sleep paralysis

Sleep deprivation

Sleepwalking killer Scott Falater

Sleepwalker’ Acquitted of Murdering Mother-in-Law After 15-Mile Drive

Lucid Dreaming

Sleep is crucial

Mantis from the MCU

Hormones Makes us Sleepy

Circadian rhythms

Do Other Animals Dream

does lunar phases effect sleep?

Pain receptors in brain?

Staying active during brain surgery, playing instruments

They Live (1988)

“The computer says no”—Little Britain show

Sundowners syndrome

Marvel’s Sleepwalker Character

Marvel’s Nightmare Character

If you die in dream do you die in real life

Georgia’s Tid Bits

Washing Brain During Sleep 

Nightmare On Elm Street: True Story

Jacob’s Ladder:Dreams and Consciousness,Hollywood-Style by Kelly Bulkley

Jacob’s Ladder- Movie

MIT in Fluid Interfaces

New device can control your dreams: Marketers try to hack the brain!

Taking the perfect nap by NPR

Print by Georgia Geis @atomic_number14

Okay, that’s it for this episode. How’d we do?

You can always email (I do answer back), click the comment link below, or follow me online for real time tracking. 

Rabbit Hole of Research the Podcast: Episode 6: Zombies: The Show Notes

Nick and Joe talk about Zombies. Fast zombies, slow zombies, Walking Dead, The Last of Us, Thanos’ snap, arachnids, The Thing, and do corn tortillas taste like flesh?

This has no particular format; it’s just correcting or updating anything in the show we didn’t get a chance to fully talk about or things we had on the tips of our tongues and couldn’t get out as we recorded. As always, feel free to comment, and we will address stuff in future shows! Enjoy. 

Don’t forget to Rate the show!

artwork by 

Georgia Geis@atomicnumber14

Say hello and let us know:

Are you on team Fast Zombies or Team Slow Zombies?

What’s your favorite Zombie movie or book?

How long would you make it after the Zombie Apocalypse starts?

What we drinking?

Joe: Bake and Break DIPATrillum Brewing company and Brockton Brewing Company

Nick: Calm Before the StormJ. Wakefield Brewing

**Around 27 mins Nick tries to become a zombie by swallowing the yeast plug in the bottom of his beer!

Jason and the Argonauts (1963): The Children of Hydra’s Teeth

ZNation (2014-2018) is the tv show Joe was thinking about 

Some favorite Zombie movies and series:

Night of the living dead (1968)

Dawn of the Dead (1978)

Night of the Living Dead (1968)

Shaun of the Dead (2004)

28 Days Later (2002)

World War Z (2013)

Train to Busan (2016)

Zombieland (2009)

Resident Evil (2002)

The Walking Dead (2010-2022)

The Last of Us

Walking Dead

I zombie

Favorite Zombie Books:

Dead City Series by Joe McKinney

Feed Trilogy Mira Grant (Seanan McGuire)

Rot and Ruin by Jonathan Maberry

Day by Day Armageddon by J. L. Bourne

The Walking Dead series by Robert Kirkman

Pride and Prejudice and Zombies by Seth Grahame-Smith

World War Z and Zombie Survival Guide by Max Brooks

The Girl with All the Gifts by M.R. Carey

The Living Dead by George A. Romero and Daniel Kraus.

Print by Georgia Geis @atomic_number14

Science behind zombies in Return of the living dead (1985)

Real world basis of 245 toxin 

The concept of 2-4-5 Trioxin is based in part on Agent Orange, a real-life defoliant used by the Army during the Vietnam War. The two chemicals share a number of similarities: both were used against plants by the United States Army during the 1960s, and both proved to have horrifying side effects. One of the two chemicals used to produce Agent Orange is called 2,4,5-Trichlorophenoxyacetic acid. Agent Orange also contained chemicals known as dioxins.

2-4-5 Trioxin should not be mistaken for the real chemical trioxane, which is used by morticians to repair cells and maintain a corpse’s contours after postmortem tissue constriction.

Zombies generally meet three important criteria. 

They are 1) stimulus-response creatures that seek flesh 2) continually decomposing and 3) contagious via bodily fluids. 

If we can explain, reasonably, how and for what reason a pathogen might cause/allow these conditions, we can describe a realistic zombie pathogen.

What is zombie pathogen?

A zombie pathogen must 1) be transmitted via bodily-fluids to 2) ensure sufficient and total infection which 3) is always fatal due to the fact that pathogen must 4) either consume the host or host-acquired flesh 5) hijack all the necessary functions for movement and sensation 6) provide at least some nutrients to itself and the body 7) allow continued movement and 8.) slow the decomposition of the host body.

How easy is it to infect brain?

In general, it is not easy for infectious agents to directly infect the brain. The brain is protected by several barriers that limit the entry of pathogens, including the blood-brain barrier and the meninges (the protective membranes that surround the brain and spinal cord).

However, some viruses, bacteria, fungi, and parasites can cause infections that can potentially spread to the brain if they cross these protective barriers. Examples of infectious agents that can cause brain infections include:

Viruses such as herpes simplex virus, West Nile virus, Zika virus, and rabies virus

Bacteria such as Neisseria meningitidis, Streptococcus pneumoniae, and Mycobacterium tuberculosis

Fungi such as Cryptococcus neoformans and Aspergillus fumigatus

Parasites such as Toxoplasma gondii and Plasmodium falciparum (the parasite that causes malaria)

The ease with which an infectious agent can infect the brain depends on various factors, including the virulence of the pathogen, the route of infection, and the immune status of the individual. In general, infections that affect the respiratory system, bloodstream, or nervous system are more likely to spread to the brain than infections that affect other parts of the body

Print by Georgia Geis @atomic_number14

Methods of infection?


The speed at which you can be infected by bacteria depends on a number of factors, including the type of bacteria, the route of exposure, and the individual’s immune system. In some cases, bacteria can infect a person almost immediately after exposure, while in other cases, it may take longer for symptoms to appear.

For example, some bacteria, such as Streptococcus pneumoniae, can cause an infection within a few hours of exposure, particularly if they enter the body through a wound or other opening in the skin. Other bacteria, such as Mycobacterium tuberculosis, which causes tuberculosis, can take several weeks or even months to cause an infection.

The severity of the infection can also depend on the individual’s immune system. In healthy individuals with strong immune systems, the body can often fight off bacterial infections before they become serious. However, individuals with weakened immune systems, such as those with HIV/AIDS or undergoing chemotherapy, may be more susceptible to bacterial infections and may develop symptoms more quickly.

It’s important to note that not all bacteria are harmful and can cause infections. In fact, many bacteria are beneficial to the body and play important roles in digestion, immunity, and other functions.


The speed at which you can be infected by a virus depends on a variety of factors, including the type of virus, the route of transmission, and the strength of your immune system.

For example, some viruses can be transmitted through the air and can infect you within seconds of being exposed to them. Other viruses may be transmitted through contact with infected bodily fluids or surfaces, and may take longer to infect you.

The length of time between being infected with a virus and developing symptoms can vary depending on several factors, including the type of virus, the route of transmission, and individual differences in immune response.

In some cases, symptoms may appear within a few days of being infected with a virus. For example, symptoms of the flu typically develop within 1-4 days after exposure to the virus. Other viruses, such as HIV, may take longer to produce symptoms, with some individuals not experiencing symptoms for several years.

It’s also important to note that some individuals may be asymptomatic carriers of a virus, meaning they are infected but do not show any symptoms. These individuals can still transmit the virus to others, making it important to take precautions to prevent the spread of infection.


The length of time between exposure to a fungal infection and the onset of symptoms can vary depending on several factors, including the type of fungus involved, the individual’s overall health and immune system, and the severity of the infection.

In some cases, symptoms may develop within a few days of exposure, while in others, it may take weeks or even months for symptoms to appear. Some fungal infections, such as histoplasmosis, can cause symptoms that are similar to those of a cold or flu and may go undiagnosed for a long time.

Infecting the Brain

Fungus infect brain:

While it is rare, some types of fungi can invade the brain and cause serious infections. This is known as fungal meningitis or fungal encephalitis, depending on the specific part of the brain that is affected.

Fungal meningitis is an infection of the lining of the brain and spinal cord, while fungal encephalitis is an infection of the brain tissue itself. These infections can be caused by several types of fungi, including Cryptococcus, Aspergillus, and Candida, among others.

Symptoms of fungal meningitis or encephalitis can include fever, headache, neck stiffness, nausea, vomiting, confusion, and seizures. These infections are considered medical emergencies and require prompt treatment with antifungal medications.

Virus and bacteria brain infection:

Yes, bacteria and viruses can infect the brain, and such infections are referred to as central nervous system (CNS) infections. These infections can cause a range of symptoms and may be serious or even life-threatening.

Bacterial infections of the brain are often caused by bacteria such as Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae. These bacteria can cause meningitis, an inflammation of the membranes surrounding the brain and spinal cord, and encephalitis, an inflammation of the brain tissue itself.

Viral infections of the brain can be caused by a range of viruses, including herpes simplex virus, West Nile virus, and Zika virus. These infections can cause a range of symptoms, including fever, headache, confusion, seizures, and paralysis.

Organisms that can infect your brains:


This is an infection caused by the parasite Toxoplasma gondii. The parasite can enter the brain and cause encephalitis, which can lead to seizures and neurological symptoms.


This is an infection caused by the parasite Plasmodium, which is transmitted by mosquito bites. In severe cases, malaria can cause cerebral malaria, which is characterized by seizures, coma, and other neurological symptoms.

Naegleria fowleri

This is a type of amoeba that can enter the brain through the nose and cause a rare but often fatal infection called primary amoebic meningoencephalitis (PAM).

Taenia solium

This is a tapeworm that can cause neurocysticercosis, which occurs when tapeworm larvae infect the brain and form cysts. This can cause seizures, headaches, and other neurological symptoms.

It’s important to note that these infections are relatively rare, and many can be prevented through proper hygiene, avoiding contaminated water sources, and using insect repellent when necessary.

Cordyceps — not humans, but ants — still cool

is a type of fungus that belongs to the Ascomycota division. The growth rate of Cordyceps can vary depending on the species, growth conditions, and availability of nutrients.

In general, Cordyceps grows relatively slowly compared to some other fungal species. Under optimal conditions, it may take several weeks or even months for Cordyceps to grow to its full size. This slow growth rate is partly due to the fact that Cordyceps requires a host organism, such as an insect or other arthropod, in order to complete its life cycle.

Once the Cordyceps spores infect the host, it can take several days to weeks for the fungus to grow and spread throughout the host’s body. The fungus then produces a fruiting body, which is the visible part of the fungus that emerges from the host’s body. The fruiting body can take several weeks to fully mature and release its spores, which can then infect new hosts and continue the cycle of growth and reproduction

Print by Georgia Geis @atomic_number14

Voodoo Zombies

Voodoo zombies are a concept in Haitian Vodou, a religion that originated in Haiti. In the context of Vodou, a zombie is a person who has been brought back to life through supernatural means by a Vodou practitioner, known as a bokor.

Contrary to popular culture, Vodou zombies are not typically portrayed as mindless, flesh-eating monsters. Instead, they are said to be under the control of the bokor who reanimated them and are often used as slaves or laborers.

The process of creating a zombie involves administering a powerful hallucinogenic drug, called tetrodotoxin, to the victim. This drug induces a state of apparent death, which can last for several hours. The bokor then revives the victim using various methods, such as CPR or a special potion, and places them under their control.

It’s worth noting that the concept of zombies in Vodou has been widely misunderstood and sensationalized by popular culture, leading to many misconceptions about the religion and its practices.

VoodooZombies in Fiction

The movie “The Serpent and the Rainbow” (1985) tells the story of a Harvard scientist who travels to Haiti to investigate the creation of voodoo zombies.

The movie “White Zombie” (1932), which is widely considered to be the first zombie film ever made.

Okay, that’s it for this episode. How’d we do?

You can always email (I do answer back), click the comment link below, or follow me online for real time tracking.

Rabbit Hole of Research Podcast Episode 4: Giant Animals Show Notes

Episode 4: The Show Notes

This has no particular format; it’s just correcting or updating anything in the show we didn’t get a chance to fully talk about or things we had on the tips of our tongues and couldn’t get out as we recorded. As always, feel free to comment, and we will address stuff in future shows! Enjoy.

What we drinking:

Joe: Phony Negroni —St. Argrestis

Nick: Water

Let us know:

What’s your favorite animal?

What’s your favorite giant animal movie?

Favorite color?

Leave a comment

Subscribe now


Show notes:

Technically any plane carrying the president is designated as Air Force One:

Air Force One (1997) movie

What is Dry January

Food of the Gods 1976 movie 

Food of the Gods Novel by H.G. Wells

Art by Georgia Geis @atomic_number14

Let the Ants Try by Frederik Pohl (short story)

Where do sloths live?

Sloths are found throughout Central America and northern South America, including parts of Brazil and Peru

Who sings song—“You and me, baby, ain’t nothin’ but mammals So let’s do it like they do on the Discovery Channel”? 

Bloodhound Group—‘The Bad Touch’ 

Aldi and Trader Joe’s history

E. L. Doctorow: Homer and Langley—universal newspaper

Seanan McGuire (Mira Grant) Into the Drowning Deep

Pushing beached whales into ocean?

Whalefall—Daniel Kraus 

Largest land animal

The African Elephant (Loxodonta africana) holds the title for the largest land animal. Adult male African elephants can weigh between 5,000 to 14,000 pounds (2,268 to 6,350 kilograms) and stand about 8.2 to 13 feet (2.5 to 4 meters) tall at the shoulder. Female African elephants are generally smaller than males but still large compared to other land animals.

It’s worth noting that the size of elephants can vary, and these measurements are approximate. The African Elephant’s large size is a testament to its adaptation to diverse habitats across the African continent.

Largest sea animal

The blue whale (Balaenoptera musculus) holds the title for the largest sea animal and, in fact, the largest animal on Earth. Adult blue whales can reach lengths of up to 100 feet (30 meters) and weigh as much as 200 tons. These enormous marine mammals are filter feeders, primarily consuming small shrimp-like animals called krill.

The sheer size of blue whales is remarkable, and they are found in oceans around the world, making them a truly global species. Despite their massive size, blue whales are gentle creatures, and their conservation status is classified as endangered due to historical whaling practices. Conservation efforts are ongoing to protect and preserve these magnificent marine animals.

The size of animals is constrained by various biological, ecological, and physical factors. Some limitations include:

1. Metabolic Demands: Larger animals generally have higher metabolic demands. Meeting these demands becomes challenging, as it requires sufficient food intake, efficient energy utilization, and effective waste removal.

2. Support Structures: The strength of bones, muscles, and other support structures is crucial. Beyond a certain size, the ability to support the body’s weight becomes a limiting factor.

3. Respiratory System: Diffusion-based respiratory systems become less effective as an organism grows larger. Efficient gas exchange becomes challenging, potentially limiting the maximum size of animals relying on this mechanism.

4. Heat Dissipation: Larger animals face challenges in dissipating heat efficiently. This is due to the decrease in surface area relative to volume, affecting heat exchange with the environment.

5. Reproductive Challenges: Larger animals often have fewer offspring and longer gestation periods. This could impact reproductive strategies and population dynamics.

6. Predator-Prey Dynamics: Size affects the ability to evade predators or capture prey. Both extreme sizes, very large or very small, can be disadvantageous in certain ecological niches.

7. Evolutionary Pressures: Evolutionary pressures may favor smaller sizes in specific environments, promoting agility, rapid reproduction, and adaptability over large size.

8. Ecological Niche: Each species occupies a specific ecological niche, and the size of an organism is often adapted to its role in the ecosystem. Deviating too much from the optimal size for a given niche could be disadvantageous.


• Schmidt-Nielsen, K. (1984). Scaling: Why is Animal Size So Important? Cambridge University Press.

The size of insects is constrained by various biological and physical factors. Here are some key limitations:

1. Exoskeleton: Insects have an exoskeleton made of a rigid material called chitin. As they grow, they need to molt and shed their exoskeleton to accommodate a larger size. This process becomes more challenging as the insect gets larger due to the increased structural demands.

2. Respiratory System: Insects rely on a system of tiny tubes called tracheae for respiration. As they grow larger, the surface area available for gas exchange becomes insufficient, limiting their ability to provide oxygen to all cells effectively.

3. Muscle Efficiency: The efficiency of muscle function decreases as insects get larger. The relationship between muscle strength and size is not linear, and larger insects may face challenges in coordinated movement and efficient muscle function.

4. Metabolic Rate: Larger insects might struggle to meet the metabolic demands associated with increased body size. Efficient energy utilization becomes a limiting factor, affecting overall viability.

5. Predation: Larger insects may become more vulnerable to predators. Their size makes them easier targets, and the advantages of being smaller, such as agility and concealment, become essential for survival.

6. Feeding Efficiency: As insects grow larger, their feeding efficiency might decrease. The energy required to forage for food may surpass the energy gained from the food itself.

7. Developmental Constraints: The developmental processes of molting and metamorphosis, which are integral to an insect’s life cycle, impose limitations on the attainable size.

8. Environmental Conditions: In certain environments, such as those with limited oxygen concentration, larger insects might struggle to obtain sufficient oxygen, further restricting their size.

9. Evolutionary Trade-offs: Evolutionary pressures may favor smaller sizes in certain ecological niches due to trade-offs between size, reproductive strategies, and adaptation to specific environments.


• Chapman, R. F., Simpson, S. J., & Douglas, A. E. (2013). The Insects: Structure and Function. Cambridge University Press.

Limitations of size for Animals Living in Water:

1. Buoyancy: Water provides buoyancy, supporting the weight of aquatic organisms. This allows for the existence of much larger animals in water compared to on land, where the gravitational pull is a more significant constraint.

2. Respiration: Aquatic animals often have gills, enabling efficient extraction of oxygen from water. This allows for a more effective respiratory system, potentially sustaining larger body sizes.

3. Swimming Efficiency: The streamlined shape and reduced effects of gravity in water allow for efficient movement, enabling larger sizes for aquatic animals. Whales, for example, are among the largest animals on Earth and are adapted to life in the oceans.

4. Food Availability: Water ecosystems can support larger populations of prey items, providing a more abundant food supply for predators. This abundance can contribute to the development of larger species.

5. Temperature Regulation: Water provides a more stable environment for temperature regulation. This stability can support larger animals that might face challenges related to temperature fluctuation on land.


• Alexander, R. McN. (2006). Principles of Animal Locomotion. Princeton University Press.

• Vogel, S. (1994). Life in Moving Fluids: The Physical Biology of Flow. Princeton University Press.

The concept of an animal growing 10 times its natural size in fiction, using a lot of Handwavium!

1. Extreme Nutrient Density: An exceptionally nutrient-dense food source could potentially fuel rapid and substantial growth in an animal. This might include a novel substance with highly concentrated essential nutrients that the animal can efficiently assimilate.

2. Genetic Modification: In a fictional context, genetic modification or engineering could play a role. Introducing genes that enhance growth, metabolism, or nutrient absorption might result in animals reaching sizes beyond their natural limits.

3. Magical or Extraterrestrial Influence: In a fantastical setting, magical elements or extraterrestrial factors could be introduced. For example, exposure to a magical substance or an extraterrestrial nutrient could trigger extraordinary growth in the animal.

4. Biological Anomaly: A rare biological anomaly or mutation that dramatically increases an animal’s growth rate could be part of the fictional narrative. This could involve an unexpected interaction between the animal’s genetics and a specific type of food.

5. Artificial Growth Stimulants: In a speculative scenario, the presence of artificial growth stimulants, either intentionally or accidentally introduced into the animal’s environment, could lead to accelerated growth.

Various mythologies, religions and fictions around the world feature giant animals, often portraying them as powerful, mythical beings or creatures with extraordinary abilities. Here are some examples:

1. Jormungandr (Norse Mythology): Jormungandr, also known as the Midgard Serpent, is a giant sea serpent in Norse mythology. It is said to encircle the Earth, grasping its tail in its mouth. According to prophecy, Jormungandr will play a significant role in the events leading to Ragnarok, the end of the world.

2. Nemean Lion (Greek Mythology): In Greek mythology, the Nemean Lion was a colossal, supernatural lion with an impenetrable golden fur. It was one of the Labors of Hercules to defeat this fierce lion.

3. Kaiju (Japanese Mythology/Fiction): While not strictly part of ancient mythology, Japanese kaiju are giant monsters often featured in modern fiction and films. Examples include Godzilla, Mothra, and Rodan, representing colossal creatures with destructive powers.

4. Garuda (Hindu and Buddhist Mythology): Garuda is a mythical bird or bird-like creature in Hindu and Buddhist traditions. It is often depicted as large, with the ability to carry off elephants. Garuda is a divine companion of the god Vishnu.

5. Fenghuang (Chinese Mythology): The Fenghuang, also known as the Chinese Phoenix, is a mythical bird in Chinese mythology. It is often described as a giant and colorful bird with various supernatural abilities, symbolizing grace and longevity.

6. Yamata no Orochi (Japanese Mythology): Yamata no Orochi is an eight-headed and eight-tailed dragon or serpent in Japanese mythology. It was defeated by the storm god Susanoo, and one of its tails contained the legendary sword Kusanagi.

7. Bunyip (Australian Aboriginal Mythology): The bunyip is a mythical creature from Australian Aboriginal mythology, often described as a large, amphibious monster inhabiting waterholes, rivers, and swamps.

8. Simurgh (Persian Mythology): The Simurgh is a mythical bird-like creature in Persian mythology. It is often portrayed as a large, benevolent bird with magnificent plumage, sometimes said to possess healing powers.

Okay, that’s it for this episode. How’d we do?

You can always email (I do answer back), click the comment link below, or follow me online for real time tracking.

Leave a comment

Subscribe now


Rabbit Hole of Research Podcast Episode 3: Villains Show Notes

Show notes:

This has no particular format (yet), just correcting or updating anything in the show we didn’t get a chance to fully talk about or things we had on the tips of our tongues and couldn’t get out as we recorded. As always feel free to comment and we will address stuff in future shows! Enjoy:

Leave a comment


Leave a comment


Show Art by Georgia Geis

Story grid: Thriller Genre is a mash-up of Horror, Action, and Crime 

Sea of Rust: C. Robert Cargill

Terminator 2: Actor who played the scientist: Joe Morton “Dr. Miles” 


Superman I (1978); and Superman II (1980)

Short Story about wealthy people hunting poor people:

1924 short story “The Most Dangerous Game” by Richard Connell

“Surviving the Game” (1994) staring Ice-T[]

Fritz Haber-German scientist 1908 for synthesis of ammonia (Nobel prize in chemistry 1918)—dual edge sword—also know as father of chemical warfare.

Back to Future (1985): Cultural insensitivity

What is a villain?

Random House Unabridged Dictionary defines such a character as “a cruelly malicious person who is involved in or devoted to wickedness or crime; scoundrel; or a character in a play, novel, or the like, who constitutes an important evil agency in the plot.”

The opposite of a villain is a hero. The villain’s structural purpose is to serve as the opposition of the hero character and their motives or evil actions drive a plot along. 

In contrast to the hero, who is defined by feats of ingenuity and bravery and the pursuit of justice and the greater good, a villain is often defined by their acts of selfishness, evilness, arrogance, cruelty, and cunning, displaying immoral behavior that can oppose or pervert justice

People like to love villains they relate with

Research suggests that you like villains who remind us of ourselves. 

Study published in 2020 Psychological Science, Rebecca Krause, at Northwestern University: Krause, R. J., & Rucker, D. D. (2020). Can bad be good? The attraction of a darker self. Psychological Science.

Humans hardwired to find goodness in villains

A recent study from Aarhus University found those who prefer fictional villains to heroes are more likely to be villainous themselves.

Valerie A. Umscheid, Craig E. Smith, Felix Warneken, Susan A. Gelman, Henry M. Wellman, What makes Voldemort tick? Children’s and adults’ reasoning about the nature of villains. Cognition,Volume 233, 2023

The results revealed that, overall, both children and adults believed that villains’ true selves were ‘overwhelmingly evil and much more negative than heroes’.

However, researchers also detected an asymmetry in the views, as villains were much more likely than heroes to have a true self that differed to their outer personna.

The research found that those who prefer villains such as Cruella de Vil and Darth Vader, are more likely to display the ‘dark triad‘ (Machiavellianism, narcissism and psychopathy) personality traits.

Dark Triad:

‘Narcissism describes a grandiose and entitled interpersonal style whereby one feels superior to others and craves validation (‘ego-reinforcement’),’ the researchers write.

‘Machiavellianism describes a manipulative interpersonal style characterized by duplicity, cynicism, and selfish ambition.

‘Psychopathy describes low self-control and a callous interpersonal style aimed at immediate gratification.

Thanks for spending time with us. You can always email (I do answer back), click the comment link below, or follow me online for real time tracking. Until next time…


Leave a comment


Rabbit Hole of Research Podcast Episode 2: AI Show Notes

Episode 2: The Show Notes

This has no particular format, just correcting or updating anything in the show we didn’t get a chance to fully talk about or things we had on the tips of our tongues and couldn’t get out as we recorded. As always feel free to comment and we will address stuff in future shows! Enjoy:

What we drinking:

Joe: Riot: Revolution Brewery

Nick: Foeder Fiend Three Floyd’s

Let us know:

What do you think about AI?

Any questions we didn’t cover?

What did we get wrong (Check the show notes)?

Leave a comment



Show notes:

Algorithms bias in medical

Chat bot on social media

AI Fashion model week

Anti-AI clothing

Artist using Anti-AI digital image protection:

UChicago scientists develop new tool protect artists

New tools help artists fight AI by directly disrupting the systems

Protection against facial recognition in digital photos 

AI math 

Affective Computing

Self driving cars and google search misidentify POC because of training data

Self driving car racial bias

Google racist gorillas photo recognition algorithm

You can always email (I do answer back), click the comment link below, or follow me online for real time tracking.

Leave a comment



Rabbit Hole of Research Podcast Episode 1: Gaba’s Girl Show Notes

Welcome to Episode 1 Show Notes:

This is a collection of stuff that we didn’t get to in the show or talked about in the show briefly. We try to include links when possible and connecting our research paths. Maybe in future we will have a better organization system, but for now enjoy the Rabbit Hole of Show Notes!

Let us know:

What do you think about Gaba and the history of reanimation?

Any questions we didn’t cover?

What did we get wrong (read the show note first)?

Leave a comment


Leave a comment


The Show Notes:

Lester Gaba:

Who is Lester Gaba

Lester the first mannequin influencer

Some Terms:

Robotsexuality-term for falling in love with robot. 

Lovotics refers to the research of human-to-robot relationship. (Lando and L3-37)

Books/Movies reanimation rabbit hole:

Mannequin-Kim Cattrall

Frankenstein– 1818

Weird Science

Ex Machina

Real life reanimation experimenters :

  1. Luigi Galvani-1780
    1. First to show that electrical signals could move freshly dissected frog legs. 
    2. During a dissection a metal look touched the muscle and the frog twitches like it would hop away. Galvani said this was caused by a special muscle viral fluid—animal electricity. 
  2. Alessandro Volta (credited with inventing the battery and field of electrochemistry), 1782, disagreed and said any electricity could produce a similar effect. And Volta started testing this on all sorts of dead things. 
  3. Giovanni Aldini
    1. Galvani was at the end of his career, so his nephew took up the charge against Volta. After the hanging of a man named George Foster (drowned his wife and kid in a canal), the body went to the lab of Giovanni. 
    2. During a demonstration he soaped and salted the man’s ears and connected him to electrodes. As he passed a current through the man his face and mouth started to twitch. 
    3. A reporter noted, “ On the first application of the process to the face, the jaws of the deceased criminal began to quiver, and the adjoining muscles were horribly contorted, and one eye was actually opened. In the subsequent part of the process the right hand was raised and clenched, and the legs and thighs were set in motion.”
    4. It was decided by the government that if George did come back to life he should be hung again. 
  4. Andrew Ure
    1. Experimented on hanged convicts—up to 300He would draw a crowd and shock different body part to make them twitch and please the crowd. Not really answering any scientific questions. “Every muscle of the body was immediately agitated with convulsive movements resembling a violent shuddering from cold. . . On moving the second rod from hip to heel, the knee being previously bent, the leg was thrown out with such violence as nearly to overturn one of the assistants, who in vain tried to prevent its extension. The body was also made to perform the movements of breathing by stimulating the phrenic nerve and the diaphragm.”“When the supraorbital nerve was excited ‘every muscle in his countenance was simultaneously thrown into fearful action; rage, horror, despair, anguish, and ghastly smiles, united their hideous expressions in the murderer’s face, surpassing far the wildest representations of Fuseli or a Kean. At this period several of the spectators were forced to leave the apartment from terror or sickness, and one gentleman fainted.”Eventually things got boring and the church was threading to shut him down afraid that he was summoning devils. In time, he gave up the reanimation efforts, correctly concluding it was a waste of his time, and then turned his attention to more productive pursuits, such as revolutionizing the way volumes are measured and with being the first to describe a bi-metallic thermostat.
    Early 1920’s Russian experiments
  5. Sergei Bryukhonenko was a scientist living in Russia during the Revolution who invented what he called an “autojektor,” or the heart-lung machine. These exist today, and Bryukhonenko’s design was fundamentally sound, but it’s the way he tested it that’s creepy.
    1. During his early experiments, Bryukhonenko decapitated a dog and immediately connected it to his machine, which drew out blood from the veins and circulated it through a filter for oxygenation. According to his paper, Bryukhonenko kept the dog’s severed head alive and responsive for over an hour and a half, before blood clots built up and killed the dog on the table.
    2. According to the Soviet Congress of Science, Bryukhonenko actually managed reanimating of a human in 1930. 
    3. Given the hours-dead corpse of a man who had committed suicide, the team plugged his body up to the autojektor and pushed a witches’ brew of odd chemicals into his bloodstream.
    4. They opened his chest cavity, administered a mix of chemicals and got a steady rhythm. The man then started to groan and move, this freaked everyone out and they shut down the experiment letting the man did for good. 
  6. Today: Luigi Galvani initial work is the basis for Electrical muscle stimulation (EMS), also known as neuromuscular electrical stimulation (NMES) or electromyostimulation, is the elicitation of muscle contraction using electric impulses


Please don’t try to reanimate things in your living room.


galvanism — the idea that electricity could reanimate dead tissue

in honour of his pioneering work his name was given to the unit of electrical potential, the Volt.

In 1751, England passed the Murder Act, which allowed the bodies of executed murderers to be used for experimentation and scientific study.\_Act\_1751

Andrew Ure was Scottish and performed his experiment on a hanged convict (Matthew Clydesdale) in 1818. After experiment did describe a device that would later be the basis for the defibrillator. 

Mary Shelley was surrounded and influenced by science demonstrations (Galvani, Volta and Aldini were friends of Mary’s father), but some speculate that Mary Shelley used Ure as a model for her main character in the book, Frankenstein (1818).

Operating theater or operating room, is a facility where surgical procedures are performed . Historically, operating theaters where actually an amphitheater and a source of education and entertainment, often with “music and festive atmosphere…”

Research on using electrodes to give amputees Restoring the sense of touch in amputees – Today’s Medical Developments

More reanimating attempts not mentioned:

Another scientists in the field of reanimation i failed to mention was Robert E. Cornish, an American biologist who studied at the University of California Berkeley. Cornish who reportedly managed to revive two dogs by rocking them back and forth to move blood around while injecting the animals with a mixture of anticoagulants and steroids. When Cornish announced he was ready to perform his experiment on humans, a California death-row inmate, Thomas McMonigle, volunteered his body post-execution, but the State of California denied his request.

Zvonimir Vrseljal et al, April 2019 Nature. Revive pig brain 4-hours post-mortem

Organ X maintains life and raises questions about what it means to be dead. 

Other Rabbit Holes:

And you may be wondering about cryonics (I wrote a newsletter about this Hey baby it’s cold outside. Let’s stay in and talk Cryonics!), and we still have no idea how to revive a frozen body, but research is ongoing

You can always email (I do answer back), click the comment link below, or follow me online for real time tracking.


Leave a comment


What’s Up Jotham?

What? Jotham has a Podcast!

Welcome! The Rabbit Hole of Research Podcast is available now! So excited to share science and pop culture with you. You can listen to the Podcast on most providers (Apple, Spotify, YouTube, Amazon, etc), the Substack app, in a browser on my website or from this email!

SubstackAppleSpotifyYouTubeAmazon, Joe’s Website

Who Are We?

We are Jotham (Joe), a research mad scientist and author; Nick, roaster of the coffee bean, entrepreneur and pop culture guru; and sometimes Georgia, librarian, storyteller, and print maker. 

So, What is this Rabbit Hole of Research Podcast? 

It’s like playing a game of Telephone, where we will start in one place and let the conversation lead us down the winding scenic road exploring the science in science fiction, separating the facts from the Handwavium. We’ll have a little fun and you’ll learn a few facts you can use to impress your friends at a party or use as a conversation starter to go down your own rabbit holes. 

It will not just be us rambling, fumbling and tumbling down the rabbit hole, but we will invite creators, thinkers and innovators on to talk about their research, creative process and join the lively conversation exploring the quirky science in fiction. 

We know you have many choices of entertainment, so we will keep the episodes short, about the time it takes to drink a tasty beverage. So, please join us on this journey down the rabbit hole.

When Can I Expect The First Episodes?


Episode 1 (Gaba Girl and Reanimation) and Episode 2 (We Talking about AI) will drop together. We should publish an episode every two weeks or so at first, but as we get into a routine we will get to weekly.

When Will The First Guests be on? And Can I Be a Guest?

So, the first guest will make an appearance in Episode 3. And sure if you want to be a guest, just drop me an email!

What About the Newsletter?

Even though I’ve been on a little Rabbit Hole of Research Newsletter vacation, don’t worry the newsletter will return this month (Feb 10th) with writing updates (like what now that my publisher closed), when will my new book go on submission to publishers, and what I’m reading, listening, watching, etc.

As always, thanks for the support! I couldn’t do this without you!


You can always email (I do answer back), click the comment link below, or follow me online for real time tracking.

Share Jotham’s Substack

NWI Comic Con

I started going to this con for the past 8 years (we missed the 1st year). And this will be our second year vending.

We are friends with many of the other creators and performers at this Con. It has a big Con feel, but very accessible and great time for families.

Come on out and say hello. Georgia and I will be at table B07. And we will have many new prints and two new Rabbit Hole of Research Zines!!!

Lake County Fairgrounds • Crown Point, IN

11 AM to 6 PM

Find your next favorite book or author with these December 2022 newsletter giveaways or virtual book-fairs:

Book Fairs — Discover New Authors 

Holiday Book Giveaway
Free stories, because it’s the holiday season
Fantasy and Sci-FI Giveaway
Looking for a new Fantasy or Sci Fi author?
 Characters discovering their truth!
Characters discovering their truth!
 SF/F Giveaway December
SF/F Giveaway December
Wonderful Winter Books
Wonderful Winter Books

Author Newsletter Swaps

Review Copy of The Female Breeder
Review Copy of The Female Breeder
Review Copy: Hannah of Planet Echo
Review Copy: Hannah of Planet Echo
Review Copy: Secrets at Safety Cove
Review Copy: Secrets at Safety Cove
Review Copy: Vox
Review Copy: Vox

Thanks for supporting these fellow authors by checking these Giveaways and book fairs out.